Gluten hydrolysis and depolymerization during sourdough fermentation.
نویسندگان
چکیده
Hydrolysis and depolymerization of gluten proteins during sourdough fermentation were determined. Neutral and acidified doughs in which microbial growth and metabolism were inhibited were used as controls to take into account the proteolytic activity of cereal enzymes. Doughs were characterized with respect to cell counts, pH, and amino nitrogen concentrations as well as the quantity and size distribution of SDS-soluble proteins. Furthermore, sequential extractions of proteins and analysis by HPLC and SDS-PAGE were carried out. Sourdough fermentation resulted in a solubilization and depolymerization of the gluten macropolymer. This depolymerization of gluten proteins was also observed in acid aseptic doughs, but not in neutral aseptic doughs. Hydrolysis of glutenins and occurrence of hydrolysis products upon sourdough fermentation were observed by electrophoretic analysis. Comparison of sourdoughs with acid control doughs demonstrated that glutenin hydrolysis and gluten depolymerization in sourdough were mainly caused by pH-dependent activation of cereal enzymes.
منابع مشابه
Sourdough-Based Biotechnologies for the Production of Gluten-Free Foods
Sourdough fermentation, a traditional biotechnology for making leavened baked goods, was almost completely replaced by the use of baker's yeast and chemical leavening agents in the last century. Recently, it has been rediscovered by the scientific community, consumers, and producers, thanks to several effects on organoleptic, technological, nutritional, and functional features of cereal-based p...
متن کاملGluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background.
This study was conducted to improve the quality and theoretical understanding of gluten-free sorghum bread. The addition of 2% hydroxypropyl methylcellulose improved bread based on 105% water, 70% sorghum flour, and 30% potato starch. Nevertheless, a flat top and tendency toward a hole in the crumb remained. Sourdough fermentation of the total sorghum flour eliminated these problems. Size-exclu...
متن کاملMechanism of degradation of immunogenic gluten epitopes from Triticum turgidum L. var. durum by sourdough lactobacilli and fungal proteases.
As shown by R5 antibody-based sandwich and competitive enzyme-linked immunosorbent assay (ELISA), selected sourdough lactobacilli, in combination with fungal proteases, hydrolyzed gluten (72 h at 37 degrees C) of various cultivars of Triticum turgidum L. var. durum to less than 20 ppm. Complementary electrophoretic, chromatography, and mass spectrometry techniques were used to characterize the ...
متن کاملSourdough and cereal fermentation in a nutritional perspective.
Use of sourdough is of expanding interest for improvement of flavour, structure and stability of baked goods. Cereal fermentations also show significant potential in improvement and design of the nutritional quality and health effects of foods and ingredients. In addition to improving the sensory quality of whole grain, fibre-rich or gluten-free products, sourdough can also actively retard star...
متن کاملSourdough Fermentation of Wheat Flour does not Prevent the Interaction of Transglutaminase 2 with α2-Gliadin or Gluten
The enzyme transglutaminase 2 (TG2) plays a crucial role in the initiation of celiac disease by catalyzing the deamidation of gluten peptides. In susceptible individuals, the deamidated peptides initiate an immune response leading to celiac disease. Several studies have addressed lactic fermentation plus addition of enzymes as a means to degrade gluten in order to prevent adverse response in ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of agricultural and food chemistry
دوره 52 5 شماره
صفحات -
تاریخ انتشار 2004